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Abstract

Dynamic systems have found their use in sound synthesis as well as
score synthesis. These levels can be integrated in monolithic autonomous
systems in a novel approach to algorithmic composition that shares cer-
tain aesthetic motivations with some work with autonomous music sys-
tems, such as the search for emergence. We discuss various strategies for
achieving variation on multiple time-scales by using slow-fast, hybrid dy-
namic systems, and statistical feedback. The ideas are illustrated with a
case study.
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Introduction

With few exceptions, such as pure drone pieces, most music consists of auditory
patterns that vary over time. The variation has often been found to follow a
scale-free distribution, or a 1/fβ power law, which implies variation at all tem-
poral scales and a balance between predictability and unpredictability (Levitin
et al., 2012). This power law has been observed across several centuries of West-
ern music, and in different musical dimensions such as pitch and rhythm. The
exponent 0 < β < 2 varies between composers and styles, where lower values
imply more variation and higher values less variation and more predictability.

Different temporal scales correspond to different zones of perception, from
the audio rate variation giving rise to pitch and timbral perception; fast modula-
tion corresponding to grittyness and roughness; slower modulation as in tremolo
and vibrato; events sufficiently brief to process in short-term memory forming
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notes, phrases, gestures or motifs; and longer processes by which we are able to
segment the audio stream into formal sections. A similar separation of struc-
tural levels can be found in many sound synthesis languages such as Csound.
There is the low level of audio rate sound synthesis, an intermediate level of
control signals, and the high level of discrete time note events.

The audio signal and its lower level attributes such as amplitude, fundamen-
tal frequency, and spectral content are often treated as raw material subject
to external organisation by compositional procedures or realtime input. It will
be useful to distinguish two approaches to the organisation of material, namely
those of lattice-based music on the one hand and dynamic morphology on the
other (Wishart, 1996). Algorithmic composition often deals with discrete sets
of pitches, a temporal grid of onsets and duration values, and a discrete set
of symbolic dynamic levels such as pp, p, f, ff. Whereas written notes can be
ordered on a lattice, dynamic morphology is concerned with the complexity of
sound objects that change over time and cannot be easily ordered into scales.
We will outline an approach to algorithmic composition that is well adapted to
dynamic morphology, although it can also handle the discrete type of events of
lattice-based composition.

Historically, various strategies of algorithmic composition have been applied
primarily to the note level and used for score generation (Ames, 1987). Some
notable exceptions, including the SAWDUST pieces by Herbert Brün and the
GENDYN pieces by Xenakis, using what is often refered to as nonstandard
synthesis (Döbereiner, 2011), manage to bridge the separation between the low
level of sound synthesis and the higher level of large scale form. In this unified
approach to the micro and macro-levels, the waveform is composed as much as
the entire piece, sometimes applying similar procedures on all levels.

In works inspired by cybernetics and complex systems, typically using net-
works of feedback systems (Sanfilippo and Valle, 2013), a side-effect may be the
upheaval of any meaningful separation of temporal scales. Sound-generating
processes that depend explicitly on a few milliseconds of past generated sound
can nevertheless result in slower large-scale processes. Feedback systems are
ubiquitus where self-organisation and emergence are observed.

Another feedback loop is present in virually any artistic endeavor, namely
the action – perception – evaluation loop. Algorithmic composition is a circular
process which may begin with the creation of an algorithm, perhaps with a
particular musical expression in mind, then the algorithm generates a piece of
music which is evaluated by listening, followed by a cycle of further modifications
of the algorithm and evaluations of the output. The process of composition can
be highly interactive even if the interaction does not take place in realtime.
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The approach outlined in this paper can be situated in the intersection of
algorithmic composition and self-organising music systems. Computer simu-
lations of autonomous dynamical systems require an algorithm; hence, when
applied to composition it arguably should qualify as algorithmic composition.
There are interesting parallells between this type of algorithmic composition
and (non-algorithmic) self-organising music systems, not least from an aesthetic
perspective.

Martin Supper (2001) distinguishes three categories of algorithmic compo-
sition: 1) Modeling traditional compositional procedures, 2) modeling original
and novel compositional procedures, and 3) borrowing algorithms from extra-
musical disciplines. Style imitation by algorithmic composition will not be our
concern. As for Supper’s second and third categories, a strict separation is
not necessary. Certain ideas can be borrowed from other sciences and adapted
to the needs of musical composition. This is particularly clear when working
with dynamic systems and differential equations. When this borrowing has
been established over a few years, these previously extra-musical techniques are
absorbed into the regular toolbox of musical techniques.

Composition by algorithms or by self-organising processes is detached from
the immediate decision making typical of more intuitive approaches. Instead of
working directly with the musical material one works through an intermediary,
either by running code on a computer or by building some electronic apparatus.
The computer follows the instructions of the program code and the electronic
machinery follows the laws of physics without the composer’s direct interference.
Realtime interaction is optional, but the system might not be fully controllable.

Autonomous systems can be formulated as a set of equations that describe
what will happen the next moment as a function of the current state. There
is no schedule or plan for future events, nor is there necessarily any memory of
past events. That is one source of difficulties often encountered in this kind of
work, as Dario Sanfilippo points out.

In my experience, the realisation of an autonomous music system
which exhibits a convincing variety and complexity over a relatively
long time span has been something difficult to achieve, even when
implementing large and articulated networks. (Sanfilippo, 2018, p.
123)

Indeed, the goal is often to achieve some level of complexity and some amount
of variety over time, and the solution on offer appears to be to add layers of
mechanisms to monitor and automatically adjust system variables.
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Agostino Di Scipio’s description of his work on Ecosistemico Udibile is illu-
minating in this respect (Di Scipio, 2007). The description of the piece begins
with a simple electroacoustic feedback loop from which the system grows by
a process of accretion. Negative feedback loops are added in order to balance
the Larsen effect and positive or nonlinear feedback loops are added to increase
the complexity of the system’s dynamics. The system appears to have grown
from inside out like an onion, layer upon layer. When designing an autonomous
music system one cannot compose the music from beginning to end, one has to
design mechanisms that respond to situations that may arise. To be on the safe
side, one designs mechanisms also for situations that may not arise, since what
will happen in an open and highly complex system is largely unpredictable.

In the rest of this paper we focus on deterministic autonomous dynamical
systems, beginning with an overview of previous work on ordinary differential
equations for sound synthesis. Then we discuss self-organisation and emergence
as it relates to composition with autonomous systems. Next, we briefly consider
autonomous systems, followed by an introduction to slow-fast systems and hy-
brid systems that combine discrete time and continuous flow. These concepts
are then applied in a review of previous work on feedback systems with feature
extractors in the loop. We also discuss how statistical feedback can be used as
a means to increase a system’s variability. A case study shows how several of
the ideas can be applied to composition. Questions concerning the evaluation
of this class of algorithmic composition systems are addressed in the conclusion.

Previous work on sound synthesis

by ordinary differential equations
Chaotic maps and ordinary differential equations (ODEs) have long been applied
to the generation of note sequences (Bidlack, 1992). The translation of raw data
from the orbits of a dynamic system to musical notes requires quantization into
discrete values and a choice of mapping from the state variable to musical data.
Continuous time systems must be sampled at discrete time steps, for instance by
taking a Poincaré section. Therefore, maps are inherently more suitable for the
generation of discrete events such as note sequences, whereas the smooth flow of
ODEs makes them ideal for sound synthesis. If the oscillations are sufficiently
fast the state variables may be used, after proper amplitude scaling, as an audio
stream. Slower oscillations are suitable as modulating signals.

ODEs have not quite attained the popularity of other synthesis techniques
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such as additive, subtractive, granular or physical modeling. Nonlinear oscil-
lators may have a non-trivial relationship between system parameters and the
qualitative character of the audio signal they produce. Pitch, loudness and
timbre may change simultaneously by the variation of a single system parame-
ter. Analogous codependencies exist in acoustic instruments (e.g., the common
correlation between loudness and spectral brightness) and are not necessarily
unwanted. Acoustical instruments have been modelled with ordinary and partial
differential equations. An analysis method has been proposed that reconstructs
an attractor from a recording of an instrument tone and finds a dynamic system
capable of producing the attractor (Röbel, 2001). For sound synthesis there is
no need to limit oneself to the simulation of acoustic instruments, any dynamic
system with a globally stable oscillatory state is potentially interesting.

Chua’s circuit had been explored as a source for sound synthesis early on
(Mayer-Kress et al., 1993). It was found to be capable of bassoon-like timbres,
as well as percussive sounds by using an initial transient towards a fixed point.
Rodet and Vergez (1999) were not so satisfied with Chua’s circuit on its own,
but they found that extending the system with a delay line, thereby turning
it into a delay differential equation, enriched its sonic register and provided an
interesting link to other work on physical modeling of acoustic instruments.

Before digital computers were up to the task, nonlinear differential equations
were solved on analog computers. Slater (1998) suggested the use of analog
computers in combination with modular synthesizers for chaotic sound synthesis.
In a similarly adventurous spirit Collins (2008) introduced a few unit generators
for SuperCollider implementing various nonlinear ODEs. There is an ongoing
search for new chaotic systems (Sprott, 2010), many of which can be realised
as electronic circuits suitable for sound synthesis. In recent years many chaotic
oscillators have been introduced as analog modules for modular synthesizers1
and musicians are exploring sound synthesis using these chaotic systems.

Virtual analog modelling often needs to handle the problem of immediate
feedback paths in analog circuits, such as two mutually modulating FM oscil-
lators. Digital implementations usually introduce a one sample delay for such
feedback paths, but delayless, more accurate versions can be constructed from
differential equation models of the original system (Medine, 2015). Stefanakis
et al. (2015) introduced a few useful techniques by relating complex-valued,
time-dependent systems of ODEs with input signals to more familiar concepts
of sound synthesis and filtering. Complex variables have the advantage that

1Among the notable builders of chaotic modules are Ian Fritz and Andrew Fitch. A list
of existing chaotic modules in the Eurorack format is maintained on the Modwiggler forum:
https://www.modwiggler.com/forum/viewtopic.php?f=16&t=152486
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amplitude and frequency can be modelled in a single variable. Using noise as
input, these systems become stochastic differential equations.

Jacobs (2016) describes a system of connected Fitzhugh-Nagumo oscillators
on a graph, which are excited by a wave modelled by a partial differential equa-
tion. The function of the travelling wave is similar to a higher level control
function, and Jacobs describes it as a sequencer or a rudimentary tool for al-
gorithmic composition. This integration of sound synthesis and control level
signals is somewhat similar to the approach that we will pursue in this paper.

Although far from complete, this literature survey hopefully shows the diver-
sity of approaches to differential equations in the synthesis of musical signals.
Ordinary, as well as delay, stochastic, and partial differential equations have
been explored and may be useful as sources of variation on multiple time scales.

Emergence and surprise

An important motivation for making music with autonomous systems is the
search for self-organisation and emergence. A useful summary is provided by
Wolf and Holvoet (2004), who list a few criteria often considered crucial for
emergence:

1. Global behaviour, properties, patterns, or structures result from interac-
tions at a lower level. These higher level phenomena are called “emergents”.

2. The global phenomenon is novel and not reducible to the micro-level parts
of the system. In the words of Wolf and Holvoet, “radical novelty arises
because the collective behaviour is not readily understood from the be-
haviour of the parts.” We return to this point below.

3. Emergents maintain a sense of identity or coherence over time.

4. For emergence to occur, the parts need to interact. Therefore, the system
should be highly connected at the low level.

5. Decentralised control of the system implies that no single part is responsi-
ble for the macro-level behaviour; the system as a whole is not controllable.

6. In turn, the decentralised structure makes the system flexible and robust
against small perturbations. Parts of it may be replaced without changing
the emergent.
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Self-organisation, according to a view that goes back to Ashby, occurs when
the degree of organisation or order increases within a system as it evolves by
its own dynamics. By this understanding, any dissipative dynamic system that
approaches an attractor is a self-organising system.

Some rigorous and quantifiable approaches to emergence and self-organisation
have been proposed (Prokopenko et al., 2008). A set of measures introduced by
Gershenson and Fernández (2012) relate the amount of information or Shannon
entropy at the input to that at the output of a system. Although it is not always
clear how the amount of information should be measured, in particular when
considering the musical output of a complex system where perceptual criteria
should arguably play a decisive role, the idea of comparing input and output
information is worth considering. We will return to this point in the Conclusion.

In an overview of some interfaces for self-organising music, Kollias (2018) em-
phasises electro-acoustic feedback as a primordial element around which many
of the works have been structured. Although the openness to the acoustic en-
vironment perhaps puts these systems in a special category, feedback can be
explored in the digital or analog domain as well, or in any mixture of domains.
An emerging category that fits the description of self-organising music interfaces
very well is modular synthesizers and what is often refered to as “self generating
patches”2. These are analog or hybrid analog/digital systems set up in large net-
works of modules that may run autonomously and produce complex sequences
of music.

Surprise, as well as emergence, are frequently mentioned as desired qualities
in work involving self-organising music systems. Emergence is often described in
terms of the expectancies of an observer, defining “the quality of unexpectedness
of the results” (Sanfilippo and Valle, 2013, p. 18); see also the already quoted
view that novelty arises because collective behaviour is not readily understood
from the behaviour of the parts (Wolf and Holvoet, 2004). This would seem
to imply that emergence is a mere side-effect of not knowing exactly what to
expect, of lacking a full understanding of the system’s dynamics. Yet, one can
argue, having an inkling of what the system is capable of is necessary for building
up an expectation – that can then be thwarted when the system behaves in an
unexpected way. In any case, as Kivelson and Kivelson (2016) point out, the
definition of emergence according to which “something is qualitatively new if
it cannot be straightforwardly understood in terms of known properties of the
constituents” suffers from many shortcomings; “perhaps the most glaring is that

2For sound examples, patch ideas and general discussion, see the thread “Self generating
patches....tips and ideas ?” started at the Modwiggler forum on March 24, 2011: https:
//www.modwiggler.com/forum/viewtopic.php?f=4&t=31698
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it implies that as soon as something is understood it ceases to be emergent.”
Novelty effects also wear out with repetition, which shows the troubling

ephemerality of emergence as defined in terms of the observer’s reactions. Nev-
ertheless, anticipation of what will happen next in a piece of music is a crucial
part of the listening experience, as Huron (2007) discusses at length. From an
evolutionary perspective, surprise indicates a failure to predict an event in our
environment, which ultimately can be bad for our prospects of survival. As
Huron points out, we actually enjoy being right in our predictions of what is go-
ing to happen next in a piece of music, including correctly predicting the regular
recurrence of a downbeat or the chord sequence of a cadence. This seemingly
contradicts the common wisdom that we enjoy surprises in music. Violated
expectations, after all, produce reactions like frisson, awe, or laughter.

The surprise of a practitioner of self-organising music as the system, for
some poorly understood reason, generates an output that is more complex than
expected is very different from the reaction of a listener who is not aware of
what is going on inside the system. It is by no means illegitimate to seek out
these surprising situations as a practitioner, but we should be aware that for the
uninformed listener, the surprise is a function of previous listening experiences
and whatever expectations the piece itself sets up, in contrast to the expectations
of the composer, the one who built the system and knows a few things about
its inner workings.

As for emergence, “musical form emerges from interactions composed at the
signal level” as Di Scipio (2007) puts it concerning his own work. Indeed, this
would be a good example of emergence independent of the observer and their
reactions.

Autonomous systems

We now turn to a more technical description of some aspects of dynamic sys-
tems that are of importance in multi-scale algorithmic composition. The term
’autonomous system’ has a rather precise meaning in the context of dynamic
systems but is more loosely used in the context of algorithmic or generative
music.

Let us recall the definition of a dynamic system in continuous time, t, with
a state variable x ∈ Rn. A general ODE is described by an equation

ẋ ≡ dx

dt
= f(x; p(t))
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evolving from an initial condition x(0) = x0 with constant or time-variable
parameters p(t) ∈ Rm. An autonomous system has no explicit time dependence,
so it has the form ẋ = f(x; p) where p is constant.

From a musician’s point of view, autonomy rules out realtime interaction and
external control of the system. Thus, without abuse of terminology, autonomous
systems have no place in interactive live-electronics where system parameters
or the state variable itself may be put under the performer’s influence, nor can
the system receive an input signal.

The opposite of an autonomous system is a forced or driven system. To
complicate things, we note that the distinction is also a matter of perspective.

Consider the equation ẋ = −x+ sin t which has the non-autonomous forcing
term sin t. This system can be reformulated as an autonomous system in two
ways. First, one could introduce a new time variable, τ, and write the system
as

ẋ = −x+ sin τ

τ̇ = 1.

Alternatively, sin t can be expressed as the orbit of an harmonic oscillator which
takes two new state space variables and initial conditions.

Similar distinctions can be discussed in the context of self-generating patches
on modular synthesizers. The goal is to build a patch that generates interest-
ing musical sequences of its own accord without manual interference. Is the
patch truly autonomous (“self-generating” or autopoietic) if there is a sequencer
driving it, or an LFO or noise source? One could argue that the patch is more
autonomous – a matter of degrees – the fewer sources of modulation or discrete
events there are that are not themselves modulated by other parts of the patch.

Interconnectedness may therefore be a more useful criterion than autonomy
(see Fig. 1). In fully connected systems all parts receive input from all other
parts. In the limit everything is bidirectionally coupled to everything else. Then
there can be no external sources of modulation or control; hence, the system
must be autonomous. Notice also that interconnectedness was listed as one of
the criteria for emergence (see point 4 in the list in the previous section).

Slow-fast systems
Relaxation oscillators such as the van der Pol oscillator or the stick-slip mecha-
nism in bowed string instruments are well-known examples of slow-fast systems.

9



External sources (modulators) Connected system — no external input

Figure 1: Left: driven system, right, autonomous system.

A number of special techniques have been introduced to simplify the treatment
of such multi-scale systems (see Strogatz (1994) for some of them). Our motiva-
tion for discussing slow-fast systems is that they provide a convenient conceptual
framework for describing compositional models that integrate audio synthesis
and larger scale levels.

A general slow-fast system in two time-scales may be written

ẋ =εf(x, y) (1)
ẏ = g(x, y)

where ε is a small positive time scaling factor, x ∈ Rm is the slow subspace and
y ∈ Rn is the fast subspace. For example, an audio rate oscillator and an LFO
modulating each other could be modeled as a slow-fast system. With mutual
coupling between the slow and fast subspaces their dynamics are intertwined,
although with a sufficient separation of time-scales or a loose enough coupling
some simplifying assumptions can be made for a qualitative understanding of
the dynamics of each subspace.

In particular, in the fast subspace ẏ = g(x, y) the variable x may be regarded
as a set of slowly drifting parameters. As the parameters drift by some small
amount the fast subsystem may change smoothly. The drifting parameters may
also cause a bifurcation producing a qualitatively different dynamics in the fast
subsystem. As long as the fast system does not bifurcate one could think of it
as an attractor continuously varying in shape and the fast orbit as permanently
being in a transient state chasing the current attractor (Ruelle, 1987).
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Conversely, with the slow subsystem modulated by the fast subsystem the
rapid oscillations may have an effect similar to noise, where the average position
〈y〉 in the fast system’s phase space will act like a constant parameter value with
an added ”noise” term ξ. Then we may write the slow system as

ẋ = εf(x, 〈y〉+ ξ).

The usefulness of these simplifications depends on the strength of the coupling
between the two subsystems, the separation of their characteristic time-scales
and the exact form of the equations.

Fujimoto and Kaneko (2003) have shown that in a chain of coupled chaotic
systems, each slower than the next one by a constant factor, under certain
conditions the fastest system can influence the slowest. For this to happen the
separation of time-scales must be in a certain range; there must be a bifurcation
in the fastest system and the bifurcation must cascade through to the slower
systems. In their particular model, despite mutual coupling, the influence went
only from faster to slower systems. It is probably more common to have slow
subsystems influence the faster subsystems.

Slow-fast systems commonly describe spiking or bursting dynamics, such
as firing neurons, where the state variable moves slowly for most of the time
and then jumps or oscillates rapidly. In contrast, the slow-fast systems we are
interested in should have a more or less permanent fast time-scale for audio
signals and slower time-scales for synthesis parameters to ensure variation over
time.

Hybrid systems

Other useful ideas are differential equations with discontinuous right-hand side
and hybrid systems that combine the continuous flow with the discrete time of
maps. Many theoretical results about flows assume smooth vector fields, but
non-smooth systems such as piecewise smooth functions are useful models of
many mechanical and electronic phenomena. In particular, what makes this
class of systems interesting is that they allow for sudden changes.

Hybrid systems can have their discontinuities imposed at certain points in
time, such as

ẋ = fi(x) for t ∈ Ti, i = 1, 2, . . . , N
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Figure 2: Dynamics near the switching manifold. a) The vector fields on both
sides point in roughly the same direction and the flow crosses the switching
manifold. b) If the vector fields point away from the switching manifold the
solution might not be unique. c) When the vector fields point inwards to Σ the
trajectory may stick or slide along it.

where Ti are disjoint sets of time intervals whose union covers all time for which
the system is defined, such that the flow follows different equations at different
time intervals. Alternatively, the system can switch between different sets of
continuous flow equations when the state variable passes from one region of the
state space to another. Hysteretic switching is also possible, where the switching
happens only if the state variable approaches the switching point from a certain
direction (Saito, 2020).

Since we are interested in autonomous systems we will consider discontinu-
ities of the form

ẋ =

{
f1(x), x ∈ Ω1

f2(x), x ∈ Ω2

induced by switchings depending on position in state space. For simplicity we
consider a system separated into two distinct regions, Ω1,2, but the idea easily
extends to any number of regions.

Suppose each region Ωi of continuous flow is governed by the equation ẋ =
fi(x). The border between regions is called the switching manifold, Σ . What
happens when x ∈ Σ is not obvious, the system might not even have a unique
solution (Danca, 2010). Three different situations near a switching manifold
are illustrated in Figure 2. When the vector fields on one side point into the
other side and the vector field on the other side points further away (a) the
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trajectory will pass through. In the case of vector fields pointing away from the
switching manifold there may be no unique solution for an orbit starting on Σ
itself (b), and finally (c), if the vector fields on both sides point inwards to Σ
the trajectory may approach it and start sliding along it.

In addition to the familiar bifurcations that occur in smooth systems some
new bifurcation scenarios are only observed in discontinuous or nonsmooth sys-
tems (Makarenkov and Lamb, 2012). So called grazing happens when a periodic
orbit touches the switching manifold, which models situations such as a swing-
ing clapper just touching a church bell. Another example is the friction causing
the squealing noise of brakes.

Modular synthesizers are essentially hybrid systems. Oscillators and filters
generate and process continuous time signals, whereas triggers and clock signals
are discrete time events. Similarly to the switching functions discussed above,
the continuous signals can be segmented with sample & hold or analog shift
registers.

In autonomous ODEs used for algorithmic composition, hybrid systems allow
for smooth flows suitable for audio signals to have points of instant change. Ap-
plied to frequency, one can articulate a discrete set of pitches instead of having a
constant glissando. Combining a slow-fast system with switching is particularly
interesting when the discontinuities are defined on the slow subspace, as we will
demonstrate in the case study below.

Feedback from feature extractors

In the search for mechanisms that equilibrate a feedback system it is quite
natural to turn to feature extractors, such as in Di Scipio’s Feedback Study (Di
Scipio, 2007). My previous research centred on a class of autonomous systems
comprised of an oscillator or signal generator, a feature extractor analysing the
oscillator’s output, and a mapping unit that transforms the feature extractor’s
output to synthesis parameters for the signal generator (Holopainen, 2012); I
have proposed to call these systems Feature Extractor Feedback Systems, or
FEFS for short.

For a feature extractor to be useful inside a feedback system, it should process
short segments of the most recent audio output and be able to provide output
without too much latency. Time domain feature extractors that generate audio
rate output are particularly suitable for this purpose. Block-based processing
using DFT or other transforms typically deliver output values at a much slower
rate. Unless the output is interpolated, block-based processing imposes its own
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Figure 3: Left: generic FEFS model, right: filtered map.

regular pace of updates which tends to become a dominant and easily audible
effect.

By adapting to their own output FEFS have useful applications such as
automatic pitch correction of nonlinear oscillators with unknown functional re-
lations between parameters and pitch. Another interesting scenario would be
to connect several FEFS in networks where each unit analyses and responds to
the other units.

A few detailed studies of various FEFS models led me to conclude that the
feature extractor’s most salient contribution was a smoothing effect, which we
will explain shortly. A broad class of FEFS can be described by the equations

xn+1 = g(θn)

θn+1 = f(θn, πn)

πn+1 = m(φn)

φn+1 = a(xn, xn−1, . . . , xn−L+1)

where xn is the audio output, θn is an internal state or phase variable of the
signal generator, πn are the synthesis parameters, and φn is the output of a
feature extractor which operates on the last L output samples, see Fig. 3. All
variables may be vector valued.

Let us consider feature extraction using zero crossing rate (zcr) as an exam-
ple. The zero crossing rate can serve as a crude pitch estimator or a descriptor of
spectral balance. There is a well-known trade-off between temporal acuity and
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precision; a longer feature extractor window provides more accurate frequency
estimates but also smears out sudden changes in the analysed signal, whereas
shorter windows respond faster to changes but with less accuracy.

There are a few different implementations of zcr, a popular choice being to
count the number of zero crossings during the past L samples and divide by L.
Another, probably less common way is to tally up to a certain fixed number of
N zero crossings and then divide by the number of samples elapsed since the
first counted crossing. This method adapts to the signal’s content and uses a
longer effective window length for lower frequencies than for high frequencies.

The mapping πn+1 = m(φn) from feature extractors to synthesis parameters
also plays an important role. Making this mapping highly nonlinear increases
the susceptibility of the FEFS to exhibit wild behaviour, whereas smoother
mappings are likely to make φn and πn settle on some fixed values, thus causing
the generator to output a signal with constant synthesis parameters. As a rule
of thumb, increasing the feature extractor’s analysis window length has the
opposite effect of increasing the nonlinearity of the mapping.

In order to emphasise an essential point of FEFS we may grossly simplify
and reformulate the system as a filtered map (Fig. 3, right part). The feature
extractor operates on a running block of samples, and its effect can be modelled
as a time average combined with some nonlinearity. The simplified system

xn+1 =f(xn, yn)

yn = 〈g(xn)〉

lumps together the oscillator and mapping in f(x, y), and y represents the out-
put of the feature extractor; g(x) represents some nonlinear function of the audio
signal, whose time average 〈x〉 is taken over the last L samples, corresponding
to the effective window lenght of the feature extractor.

Clearly, the averaging smooths out any rapid changes, so y is a slow variable.
Notice that even if f(x, y) were a chaotic map, a long enough smoothing of its
orbit in the feature extractor’s averaging part makes it likely that the parameter
y will approach a constant value with perhaps some small fluctuations. In other
words, this situation corresponds exactly to the slow-fast system (Eq. 1) where
we approximated the slow variable as a constant plus noise term.

It has proven difficult to design FEFS that exhibit non-trivial behaviour
over extended time. Often there is a more or less prolonged initial transient
phase after which the slow variables (φn and πn) approach some fixed state.
The analysis in terms of a slow-fast system explains why this often happens.
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Chaotic solutions are also attainable with short effective window lenghts and
strongly nonlinear mapping functions.

Statistical feedback and mapping with memory
Deterministic FEFS, as formulated above, are limited by the fact that the map-
ping from feature extractors to synthesis parameters involves no memory of its
past beyond the effective lenght of the feature extractor. No monitoring mech-
anism allows the system to discover if it has got stuck on some repeating cycle
that extends beyond the length of the feature extractor. It might resemble an
improviser suffering from a loss of short-term memory, who would not be able
to guide the performance in any particular direction other than wherever the
haphazard steps of a Markov chain brings it.

Algorithmic compositions using autonomous systems may stray far from the
syntax and material of the common-practice music that has been extensively
studied by music scholars. Nevertheless, certain insights from music theory and
music psychology may be relevant, even though its focus has been lattice-based
structures rather than dynamic morphology, to borrow Wishart’s terminology
again. Research in music psychology has provided ample evidence that statis-
tical learning of musical patterns plays an important part in forming listener
expectations (Huron, 2007). First order probabilities, such as the distribution
of pitches or scale degrees, allow us to identify scales and their tonal centres.
Higher order probabilities, including transition probabilities between pitches or
durations, contribute to the recognition of different styles.

As noted in the introduction, it is a common experience that the goal of
variety over time may be elusive in autonomous music systems. Variety can
always be increased by adding another regulatory mechanism, a new layer of the
onion that makes up the algorithm. A strikingly simple and efficient technique
called dissonant counterpoint was pioneered by James Tenney. Originally it
was used to enforce a certain amount of variation on randomly generated pitch
sequences (or dynamics, durations, whatever parameter one wishes to control).
Random sequences may have occurrences of short subsequences that appear
more orderly than one might naively expect, such as immediate repetitions
or alternations between elements. Tenney’s method guarantees that such close
repetitions are ruled out. Simply put, Tenney’s scheme goes as follows (Polansky
et al., 2011):

1. Initialise an array of N entries all with the same positive number (say, 1).
Each element corresponds to a unique pitch.
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2. Interpret the values stored in the array as relative probabilities. Pick an
element randomly using its relative probability.

3. Reset the value of the chosen entry to zero and increase the values of all
other entries.

4. Repeat from step 2.

This simple scheme will make a direct repetition of a pitch impossible and a close
repetition unlikely. Tenney’s method cannot be used as such in a deterministic
autonomous system since it relies on random choices, but the idea of keeping
track of the statistics of past states can be generalised to suit our needs.

In a FEFS, one can keep track of the relative frequency of past synthesis
parameter or feature extractor values. In practice, one would use a number of
discrete bins for a histogram and introduce a mechanism tipping the system
in a direction that favours the production of less often occuring values. This,
in effect, expands the dynamic system’s memory of its past behaviour without
neccessitating storage of the entire time series. There is no guarantee that the
system will not settle on cyclical patterns, but at least the cycles are likely to
be longer than they would otherwise be (see Holopainen (2012, pp. 275-280) for
further details).

The goal distribution of synthesis parameter values does not have to be
uniform. Uneven distributions lead to a differentiation of common and rare
events. If these events are perceptually distinguishable, the rare ones are those
that are prone to carry some significance for the listener by being outliers or
exceptions. Statistical learning is at play also in the course of listening to a
piece for the first time (this is what Huron (2007) calls dynamic expectations,
in contrast to those expectations that pertain to a whole genre which he refers
to as schematic). Expectations are shaped by the probability distribution of
events as they occur in a piece.

The information content and information density of pieces of music (amount
of information over time) has been studied in music theory for decades. The
less probable an event is, the higher its information content. As Temperley
(2019) points out, it would be a formidable task to quantify the amount of
information in any musical piece, since everything (melodic pitches, harmony,
rhythm, timbre, and other aspects) contributes to information. And this is still
only considering common-practice music with large corpora available for study
and the information-carrying units relatively easy to identify.

Algorithmic composition beginning from sound synthesis, where higher levels
emerge from processes at lower levels, poses the additional difficulty of relating
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synthesis parameters to resulting audio signals, and the audio signals to their
perceptual correlates, and of defining the units that carry information. There
is a gap between theories of information applicable to the symbolic note level
and the dynamic morphology articulated by sound synthesis with freely flow-
ing synthesis parameters. Some possible approaches to information density or
complexity will be discussed in the conclusion.

Case study: The auto-detuning system

We turn now to a simple three-dimensional ODE which serves as a building
block in two algorithmic compositions. It is an example of a slow-fast system
with discontinuous derivative on its right-hand side. The system consists of two
oscillators that are detuned by an amount that depends on the amplidude of
the sum of the oscillators.

In its simplest form, the system is given by

θ̇1 = ω + δ

θ̇2 = ω − δ (2)
δ̇ = c |sin θ1 + sin θ2| − δ

with detuning δ ≥ 0, phase variables θ1,2 and frequency ω. The parameter c ≥ 0
indirectly affects the amount of detuning. Time series of sin(θi) and δ are shown
in Fig. 4.

For now, let ω = 1, and let Ωi = 1±δ be the frequencies of the two oscillators.
If the frequencies were stable the two oscillators would be tuned to a constant
ratio R = Ω2/Ω1 which is known as the rotation number, and may be calculated
as

R = lim
T→∞

1

T

T̂

0

θ2
θ1
dt.

For 0 < c < 1/4 the two oscillators are perfectly locked in sync, so R = 1. As c
increases from c = 1/4 the rotation number decreases.

Assuming that δ approaches some constant value, the phases will increase at
a constant rate. Under such conditions we can calculate an average value of the
expression in the third equation of Eq (2), for which we introduce the variable
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θ1

δ

θ2

Figure 4: Time series of the detuning system with ω = 1 and c = 1, apparently
chaotic at these parameter values. Top to bottom: sin(θ1), sin(θ2), and δ.
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ϑ = |sin θ1 + sin θ2| .

If we knew the time average 〈ϑ〉 we could solve the equation

δ̇ = c〈ϑ〉 − δ

separately, which is easy; it will simply approach c〈ϑ〉 asymptotically. Under
certain assumptions (δ being constant and R irrational), the average can be
found by evaluating

〈ϑ〉 =
1

(2π)2

¨

S

|sin θ1 sin θ2| dθ1dθ2

over the region S = [0, 2π]× [0, 2π], which turns out to be 〈ϑ〉 = 8/π2 ≈ 0.81.
Although δ is not constant but fluctuates over time, it is revealing to plot

its average value as a function of c (Fig. 5). Doing so, we find the familiar
fractal graph of the devil’s staircase, implying that for certain intervals of c the
average 〈δ〉 locks to a constant value.

Let us see how this 3D ODE resembles a FEFS. The two oscillators make
up the signal generator; there is a rudimentary feature extractor (taking the
absolute value of the oscillators’ sum and lowpass filtering works as an envelope
follower); and the estimated amplitude envelope is mapped to the detuning
synthesis parameter. In terms of slow-fast systems, the oscillators are the fast
variables (the first one faster than the second), and the detuning is the slow
variable.

The auto-detuning system is deeply embedded within a program that gen-
erates a piece called Auto-detune. As used there, it has been bestowed with a
few additional time-varying parameters wich in turn are parts of other regulat-
ing mechanisms; there are also several instances of the system as well as other
systems all connected in a complicated web. The system then takes the form

θ̇i = ωt ± δ

δ̇ = ct

∣∣∣∣sin θ1
K1

+ sin
θ2
K2

∣∣∣∣− δ
with certain functions doing the updating of all time-varying parameters. Notice
that division by Ki � 1 is a way to transform the phases originally used for
audio signals into much slower variables.
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Figure 5: Top: A devil’s staircase appears when plotting the time average of δ
against c. Bottom: Poincaré section of δ over the same parameter range.
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Another variant of the auto-detuning system is used as part of a larger
autonomous system in the piece Megaphone. The piece unfolds as a series of
beating sinusoids fading in and out, sometimes making jumps in pitch. Several
trials while tuning the system parameters resulted in processes that produced
variation for a few minutes and then approached an equilibrium state.

Megaphone combines ideas from the previous piece Bourgillator3 and the
above described detuning system. Bourgillator consists of a network of oscilla-
tors whose frequencies are updated by a function of the output amplitudes of
the oscillators. Specifically, the ordering of their relative amplitudes determines
the frequency of each oscillator. The oscillators are also phase coupled as in the
Kuramoto system (e.g. Strogatz, 2000), which allows for synchronisation of all
oscillators or clusters of oscillators.

Megaphone is built on a larger system of coupled subsystems, and is roughly
described by the following set of equations. First there is a modified auto-
detuning part,

θ̇i = ωi + δi − κ sin(θi − ϕj)
ϕ̇i = ωi − δi − κ sin(ϕi − θj)
δ̇i = ci |ui + vi| − δi

where i = 1, 2, ..., N, j = i+3 ( modN), and with N = 13 oscillators used in the
realisation of the piece. The auxilliary variables u, v are defined by

ui = αi sin(θi/Mu)

vi = αi sin(ϕi/Mv). (3)

The main difference from the bare-bones detuning system (Eq. 2) is the
phase coupling and the amplitude variables αi. Next, we introduce a slow
variable in the form of an envelope follower applied to the oscillators’ outputs.
A simple envelope follower tracing the amplitude of a faster variable u(t) can
be realized with the equation

Ȧ = τ(u2 −A)

using a time scaling constant 0 < τ � 1. The envelope followers are applied
also to the variables vi. Then the amplitude envelopes are used as inputs to a
function g(A),

3See https://ristoid.net/research/bourgillator.html
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gi(A) =
∑
j

βjU(Ai −Ai+j), (4)

where U is the Heaviside step function and βj > 0 is a decreasing sequence of
coefficients, the output of which sets the oscillator frequencies to

ωi = gi(A).

The step function of course is discontinuous, and so is the sum of step functions
in Eq. (4). Since the envelopes are slow variables the output of g(A) can
be expected to remain constant for certain intervals of time and then jump to
another value. Thus, the function g(A) produces a stepped sequence of pitches.
As soon as one of the envelopes overtakes another envelope in amplitude the
function will produce a new pitch for at least one of the oscillators.

Now, the goal is to keep these pitch changes happening. The system should
be designed such that the amplitude envelopes do not immediately settle on a
fixed order of relative loudness, because when that happens the piece no longer
evolves, it has frozen into a final fixed state. Obviously an initial condition
must be chosen so as to avoid landing directly on such a steady state. A trick
to introduce some more variability is to inject a small amount of neighboring
envelopes into each envelope follower,

Ȧi = τ(u2i + v2i − γ1Ai + γ2Aj)

and also modifying the function g(A) to compare the sizes of amplitude differ-
ences between pairs of envelopes instead of the envelopes by themselves.

Next we introduce a set of even slower variables

ψ̇i = Ai − kψi

and use them to update the oscillator amplitudes

αi = cos(ψi)

as well as other parameters such as Mu and Mv as defined in Eq. (3) that are
supposed to change at a slow pace.

This description still omits a few details but provides the gist of this par-
ticular autonomous system. To summarise, there are the fast variables (the
audio output and oscillator phases), the slower amplitude envelopes A, and the
lethargic second order envelope followers ψ. The function g() was designed to

23



produce stepwise changes at a rate that can be controlled to some extent by set-
ting appropriate parameter values. Nevertheless, this system goes through an
extended initial transient over a period of a few minutes (depending on sampling
rate and many other parameters) before ending up on a steady state (see Figure
6). It is not impossible that there are stable periodic oscillatory or chaotic states
in parts of the parameter space, however, it is not very practical to search the
space for different dynamics given the long duration of transients.

Notice also that the discrete output range of the g function means that
when it enters a stable attracting state (that is, the A’s end up in a certain
order of magnitudes), no small fluctuations or a gradual approach to the stable
state takes place, it ends up there quite abruptly. Instead of trying to scaffold
further layers of control to add complexity and longevity to the system’s errant
dynamics one might consider having a sensor analysing the output and turning
it off as soon as the equilibrium state is reached.

Concluding remarks

Autonomous dynamic systems can be used for generative music or algorith-
mic composition with systems that integrate all levels, from sound synthesis to
phrase level and formal sections. Monolithic systems of this kind have channels
between their fast and slow subsystems through which the different levels can
influence each other.

Music created with an uncompromising insistence on using the automous
system’s output as is, without editing or mixing with other material, may offer
a certain conceptual clarity while also bearing the marks of dynamic systems.
One frequently observed phenomenon is a prolonged initial transient as the
system approaches an attractor.

Long-lived chaotic transients have been observed in various settings, e.g. in
networks of pulse-coupled oscillators (Zumdieck et al., 2004). In this type of
network the transient length depends on the connectivity between oscillators. If
either a small number of oscillators or most of the oscillators are connected the
transients are short, but at intermediate degrees of connectivity there can be
very long transients. At intermediate connectivity the average transient length
grows exponentially with the total number of oscillators. When long transients
are observed in algorithmic composition with networks of oscillators and other
signal processing units, these transients could conceivably follow a similar law
of scaling with connectivity and network size.

Even if the system does not reach an equilibrium state after a prolonged
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Figure 6: Dynamics of the Megaphone system. (a) One of the frequency vari-
ables ω over time in seconds. (b) All thirteen slowest variables. (c) Detuning
over time, and (d) ψ against A showing the nature of the long transient towards
a fix point.
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transient phase, another common observation is that it seems to enter recognis-
able patterns after a while. As a composer one is tempted to compensate for any
lack of variety by adding layers of control to ensure development also on longer
time-scales. Since the system’s behaviour may differ dramatically between dif-
ferent positions in its parameter space as well as initial conditions, one may
need to search for a “sweet spot”. The introduction of multiple temporal scales
by explicit design of slow-fast systems, optionally with statistical feedback, is
another convenient way to ensure variation on multiple levels. And, it should be
added, although variation over multiple time-scales perhaps characterises most
music, the deliberate avoidance of variation on some time-scale might be an
interesting avenue to explore.

A musical motivation for using autonomous algorithmic composition systems
is to create as much complexity as possible using as simple means as possible.
As with fusion reactors, one hopes, so to speak, to get more energy out of them
than one puts into them to ignite the process, and perhaps the old saying that
fusion energy is always 30 years away also holds for this flavour of algorithmic
composition. Working with closed, deterministic, autonomous systems imposes
strict limits on what is possible, the contours of which are not as easily seen in
open, interactive, and stochastic systems.

As mentioned above (in the section Emergence and surprise), there have been
efforts to quantify notions such as complexity, emergence and self-organisation
by comparing the information content at the system’s input to that at its out-
put. A related concept is the Kolmogorov complexity, developed independently
by Kolmogorov, Solomonoff and Chaitin, and also known as algorithmic com-
plexity (Prokopenko et al., 2008), which is defined in terms of universal Turing
machines. The Kolmogorov complexity of an object’s description as a text string
is defined as the length of the shortest program that produces that output string.
Using the same computer and programming language, several output strings can
be compared to find out which one is more complex than the other. Still, there
may be no practical way of finding the shortest possible program when the out-
put is a soundfile consisting of a piece of complex music. This is equivalent to
finding an optimal compression scheme for the soundfile.

Although Kolmogorov complexity is of greater value from a theoretical than
from a practical point of view, it suggests an interesting challenge for algorithmic
composition – namely, to generate as much complexity as possible with as little
code as possible. Of course it may take more effort to formulate a concise
program than to write a longer piece of equivalent code. The program’s brevity
also resembles the concept of elegance that Sprott (2010) has applied in his
search for algebraically simple chaotic flows. Elegance, according to Sprott, is
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defined as the simplicity of a system of equations where the number of linear and
nonlinear terms are counted; the fewer and simpler the more elegant the system
is. This concept of elegance is obviously applicable to algorithmic composition
using dynamic systems.

These ideas of simplicity or elegance of program code, while producing com-
plex output, have been a guiding principle for a collection of works including
those mentioned in the Case study4. We have also noted the opposite temp-
tation of adding more layers of mechanisms to increase the complexity of the
output. Musical complexity and conciseness of code are two goals usually at
odds with one another.

Preference for musical complexity has been thought to follow an inverted
U-curve; very simple or extremely complex pieces are less liked than pieces
of moderate complexity. Recent research indicates that it is more revealing to
consider two groups of subjects: those who prefer simplicity and those who prefer
complex stimuli (Güçlütürk and van Lier, 2019). The inverted U-curve in fact
appears to be an artefact of pooling these two groups together. It was found that
preference for complex stimuli was more common among men, young subjects
and those with high scores of a systemising quotient, although other factors
may contribute. Inasmuch as algorithmic composition requires a systemising
mentality, one should not be surprised to find that composers who engage with
this type of systems have a predilection for complex results.

Given that the output of these autonomous systems is a musical composition,
we would like to evaluate its complexity according to perceptual criteria. There
is no single agreed upon definition of musical complexity, although it may be
best thought of as a multi-dimensional concept. Quantifiable approaches to
measuring musical complexity from audio recordings have been proposed in
music information retrieval, including one that takes structural change over
multiple temporal scales into consideration (Mauch and Levy, 2011). In the
end it is the composer’s judgement of the algorithm’s output that matters.

Apart from any sensory appeal music generated by autonomous systems
might have, the medium also has a certain scientific appeal as well as a concep-
tual flavour. As for science, one might come across phenomena at the forefronts
of dynamic systems research. And the terseness of a few equations even sur-
passes that of the equivalent computer code. The conceptual aspect is well
illustrated by the ease of communicating the generating formula – jot down a
few equations and there you have your composition.

4Titled Kolmogorov Variations or Eleven Hard Pieces. Source code for generating the
pieces is available at https://ristoid.net/prog/kolmogorov.html.
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