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ABSTRACT

Many  distortion  effects  can  be  implemented  as 
nonlinear  (NL) filters.  We review some common NL-
filters,  and  introduce new ones that  combine features 
from linear filters and waveshaping. The great interest 
in recent years in analog effects has resulted in several 
attempts  at  digital  emulations  of  classic  analog 
products. However, many interresting digital effects can 
be construed without knowledge of analog counterparts. 
Although  NL-filters  seem  to  require  complicated 
mathematical  analysis,  much  insight  can  be  gained 
simply by carrying out some relevant experiments. 

1. INTRODUCING NONLINEAR FILTERS

According to a negative definition, a nonlinear  filter is 
any filter that does not meet the criteria of linearity. For 
a  linear  system  L,  given the two signals  {x} and  {y} 
and a constant a, two familiar conditions must hold:

L (ax) = aL (x) (1)
L (x) + L (y) = L (x + y) (2)

In contrast, we will describe several filters that share the 
property that these two conditions are not met. They can 
be written in the general form

yn = f(xn, ... xn–N, yn–1, ..., yn–M) (3)

where  f(∙)  is  a  nonlinear  function.  Dynamic  range 
processing is a common type of nonlinear processing.

An important  class of nonlinear  filters are the 
statistical  filters,  e.g.  the median  filter,  which  require 
sorting of its input. However, most of the NL-filters we 
will  consider  here combine a regular  linear  filter  with 
distortion  or waveshaping  The waveshaper  W and the 
linear filter F can be cascaded in two obvious ways, or 
nested in a recursive structure, or they can be combined 
in parallel structures.

Both  of  the  two  cascaded  structures  can  be 
understood  by  analyzing  the  behaviour  of  their 
constituent parts, if they are known. A typical example 
could be a lowpass filter followed by distortion. There is 
always  a  risk  that  the  nonlinearity  introduces  an 
objectionable  amount  of  aliasing.  If  the  distortion 
function is a polynomial  of degree P, and the lowpass 

effectively cuts  frequencies  above 1/P  of  the  Nyquist 
frequency, then this effect is guaranteed to produce band 
limited results and aliasing can be avoided [12]. In cases 
where the waveshaping function does not produce band 
limited output, oversampling may be a solution.

Much  more  intriguing,  and  often  sonically 
rewarding  results  can  be  obtained  with  a  feedback 
structure. In  particular,  some filters may exhibit chaos. 
A necessary, but not sufficient requirement for chaos to 
occur,  is  that  the  system  is  recursive,  and  has  a 
nonlinearity in the feedback path.

In  the next  section  we discuss some standard 
modelling  approaches  to  nonlinear  systems,  and  give 
examples  of  previous  work  on  NL-filters.  Then  we 
propose  a  few  new  variations  on  NL-filters.  In 
particular,  some modifications of a  bandpass filter  are 
studied.  New  digital  effects  can  be  constructed  in  a 
process similar to analysis by synthesis. 

2. MODELLING APPROACHES

Nonlinear  time invariant  systems with  memory can be 
modelled  by  means  of  convolution.  Two  common 
approaches  are  the  Volterra  series  representation  and 
dynamic convolution.

2.1. Volterra Series

Some nonlinear  systems can  be described in  terms  of 
their  Volterra  series  expansion.  A first  order  Volterra 
system is simply a one-dimensional convolution, yn = hn 

*  xn.  A  second  order  Volterra  system  also  involves 
second degree cross terms,

y n=h1n∗x n

∑
i=0

∞

∑
j=0

∞

h2i , j x n−i  x n− j  (4)

and the third order system has third degree terms, and 
so forth. The system is described in terms of its present 
and  past  input,  and  does  not  depend  on  its  previous 
output.  Thus a nonlinear  recursive filter  is not  ideally 
suited  for  this  model;  it  would  take  an  infinite  order 
Volterra  system  to  represent  it.  Furthermore,  if  the 
nonlinearity involved is  not  a  low degree polynomial, 
the  complexity increases even more.  For  instance,  the 
very useful tanh function would have to be represented 
as an infinite Taylor series expansion. 



However,  an  infinite  degree  polynomial 
distortion  function would yield aliasing,  which can  be 
avoided  by  truncating  its  Taylor  series.  Such  an 
approach has been taken in modelling a Moog filter [6].

There  are  methods  to  analyze analog  devices 
and identify their Volterra kernels. While these tend to 
be of a very high order, they can be reduced to a form 
that is more suitable for digital implementation [10].

A  simplified  form  of  the  Volterra  series  is 
obtained by discarding all  multiplications with delayed 
samples; i.e., the system is modelled as a sum of linear 
convolutions  of  x,  x2,  ...,  xp.  This  corresponds  to 
processing with nonlinear distortion followed by a linear 
filter, and has been used for loudspeaker simulation [4].

2.2. Dynamic Convolution

Dynamic  convolution  was  introduced  as  a  means  to 
simulate analog effects,  with  the additional  benefits of 
reduced  noise  levels  and  flexibility  of  operation  that 
comes  along  with  its  digital  implementation.  This 
method was pioneered and patented by Michael Kemp 
[8], but an almost identical approach was being pursued 
at roughly the same time by Angelo Farina, who called 
it impulse response switching [3]. Although the purpose 
was to simulate analog processing, the algorithm could 
be used with any set of impulse responses, which do not 
need to be sampled from an analog system.

In systems consisting of a nonlinearity followed 
by a linear  filter,  the impulse response will  depend on 
the  amplitude.  The  simulation  process  begins  with 
sampling  a  collection  of impulse  responses  at  several 
different  amplitude  levels  and  normalizing  their  peak 
amplitudes. Let hk[n] be the impulse response in the kth 
amplitude interval. Then, for each input sample x[n] an 
impulse  response  will  be  chosen.  Let  S(x[n])  be  the 
function that assigns an impulse response corresponding 
to a given amplitude. The output y[n] is a summation of 
convolutions  with  kernels,  that,  in  general,  will  vary 
from one sample to the next:

y[n ]=∑
m=0

M−1

x[n−m]h S x[n−m ][m]  (5)

If the  number  of impulse  responses is  lower  than  the 
number of discrete amplitude steps (e.g. 256 in an 8-bit 
signal),  they should be interpolated to match variations 
in  amplitude.  In  Kemp’s  version,  the  amplitude  steps 
are regularly spaced on a linear  scale, whereas Farina 
used logarithmic spacing [3].

The quality of dynamic convolution depends on 
the  number  of  impulse  responses  and  their  length. 
While  the  purpose  is  to  introduce  some  amount  of 
distortion, having too few impulse responses will most 
likely  introduce  excessive  distortion.  As  a  general 
guideline for designing new dynamic convolution effects 
from scratch, the impulse responses should change very 
little from one amplitude level to the next. 

3. EXAMPLES OF NL-FILTERS

A wide assortment of NL-filters has been developed to 
meet various needs in image and audio processing. One 
common  type is  the  median  filter.  Its  implementation 
and use differ from other  NL-filters in  many respects. 
Another  broad  class  comprises  the  waveguide  filters, 
which  are  basically a  recurrent  structure,  including  a 
delay.  There  are  also  lots  of  attempts  at  modelling 
classic analog filters, such as the Moog filter [6, 7].

3.1. Ordinary median filters

Most often encountered  in  image processing,  the two- 
dimensional median filter is defined as the median of a 
set  of pixel  values.  The  one-dimensional  case  can  be 
used for audio filtering. An Nth order median filter sorts 
the last N input samples and returns the middle value.

The  median  filters’  purpose  is  to  remove 
impulsive noise, i.e., extreme peak values. An improved 
(but  far  from perfect)  peak remover can  be built  of a 
differentiator,  followed by a median  filter,  and a leaky 
integrator  to  compensate  for  differentiation.  While  a 
median filter distorts a sine wave, it also attenuates high 
frequency content  of white noise,  in  effect acting as a 
lowpass filter. 

Median  filters  have  some  unusual  properties: 
its  impulse  response is  always zero;  and  every output 
value is guaranteed to be identical  to one of the input 
values.  This  may  be  useful  in  applications  such  as 
algorithmic composition. Consider a signal representing 
a  discrete  set  of  pitches.  A  median  filter  will  never 
output  any  intermediate  values;  hence  rounding,  and 
pitches outside the scale system, is avoided.

3.2. Recursive and weighted median filters

Several  variations  of  the  standard  median  filter  have 
been suggested. The median filter can be made recursive 
by feeding back one or more of its last output values. A 
recursive median filter

yn = median(xn, xn–1, ..., xn–N, yn–1, ..., yn–M) (6)

may be more effective than  the non  recursive filter  of 
same  order.  This  can  lead  to  a  great  efficiency 
improvement,  since  most  sorting  algorithms  have  an 
O(n) complexity at best. The number of feedback taps yn 

should  not  exceed  the  number  of  direct  inputs  xn; 
otherwise the median filter will stick to one of its values 
and keep repeating it forever.

Even  more exotic  are  the  median  filters  with 
weighed coefficients, allowing negative weights [11]. A 
sample value is repeated a number of times, making its 
selection  more  probable  the  more  it  is  repeated.  For 
negative  weights,  the  sign  of  the  sample  value  is 
inverted.  Such  filters  may  be  designed  to  have  a 
bandpass  or  highpass  characteristic  on  white  noise, 
combining the frequency selectivity of linear filters with 
the ability to filter out impulsive noise.



3.3. The Dobson-ffitch nlfilt

The Csound opcode nlfilt  is an  implementation  of the 
filter structure 

yn= xnayn−1byn−2d yn−L
2 −C (7)

as originally proposed by Dobson & ffitch [2].  For large 
parameter ranges, it sounds much like a comb filter, and 
in  regions  of self-oscillation  it  may be reminiscent  of 
acoustic feedback. Most importantly,  it  easily becomes 
unstable.

It’s tempting to amend the filter and counteract 
its  instability.  One could wrap the feedback path  in  a 
clipping function. Clearly this makes the occurrence of 
instability impossible for any parameter ranges. Another 
trick is to put a compressor inside the filter, and reduce 
the  gain  whenever  yn exceeds  some threshold.  While 
this is a worthwhile strategy in other cases [1], here it is 
not.  Unfortunately,  the  Dobson-ffitch  filters’  sonic 
potential is reduced by any tampering with its structure. 
Its  most  interresting  sound  is  often  to  be  found  in 
regions tantalizingly near instability. 

3.4. The Babylonian square root filter

One of the oldest known algorithms, is the Babylonian 
square root algorithm. Despite its age, its application as 
an  audio  filter  seems  to  be  novel.  Let  xn >  0  be  a 
constant signal (i.e. xn = a for all n) and y0 = 1. Then

yn=
1
2
 yn−1

xn

yn−1
 (8)

will rapidly converge to the square root of a.
In  practice,  the signal  xn is  first  mapped into 

the  positive interval  (0,  P].  Then  the filter  is  applied, 
and finally the signal  is mapped back into the interval 
[-1,1]. The sound of this filter is a mild distortion.  Its 
asymmetric character introduces harmonic distortion on 
both odd and even partials.  The impulse responses are 
generally characterized by very short transients.

A  comparison  with  the  square  root  function 
used  as  a  waveshaper  reveals  that  the  Babylonian 
algorithm produces almost the same waveshape. In both 
cases, a sine wave becomes pointed in its negative half, 
while the positive part is more rounded. Obviously, the 
difference stems from the inertia,  the time it  takes for 
the algorithm to converge to its limit.  Since this filter 
does  not  produce  band  limited  output,  some 
oversampling may be necessary. 

4. DISTORTED BANDPASS FILTERS 

Taking  a  bandpass  filter  as  a  point  of departure,  we 
experiment  with  nonlinear  alterations.  Their  effects 
range from distortion, to ringing and chaos.

4.1. Variations on filter structure

Among several possible designs of a bandpass filter, we 
choose

yn=G xn−R xn−2b1 y n−1b2 yn−2 (9)

where  the  parameters  G,  R,  b1 and  b2 are  calculated 
from the center  frequency  fc,  bandwidth  and  sampling 
frequency [9].

This  filter  structure  can  be  modified  by 
inserting a nonlinear, bounded function f, for example:

yn= f {G gxn−R xn−2b1 yn−1b2 yn−2} (10)

An additional parameter g controls the input gain. This 
formulation is guaranteed to be stable and to produce an 
output with the same bound as f.

Another filter  structure that  has been tried out 
is  the  one  in  figure  2.  This  filter  structure  produces 
markedly different sounds from the one above. For g > 1 

it  will  tend to ring  on the center  frequency. However, 
very little  distortion  is  introduced.  For  all  these filter 
structures,  the choice of limiting  function may have a 
significant impact on the filter’s behaviour.

4.2. Choice of limiting function

The tanh function seems to prevail as limiting function. 
Indeed,  it  has  many desirable  properties:  Its  range  is 
bounded  to  the  interval  (-1,1);  it  is  continuous  and 
monotonously increasing, and almost linear near 0.

Other  functions we have tried include arc tan, 
soft clipping [12], hard clipping,  sine, and the lowered 
bell function:

f x = 2
x21

−1 (11)

When these nonlinearities appear  inside filters,  it  is in 
many respects advantageous that  they approximate the 
identity function f(x) = x in the lower amplitude range, 
as this  will ensure that  the filter  behaves more or less 
like a linear  filter  when the signal’s amplitude is low. 

Figure  1. Second  order  filter  structure  with  one 
nonlinearity.
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An important implication is, that the frequency response 
as calculated for the corresponding linear filter is valid 
as an estimation when the amplitude and gain settings 
are low. Clearly the lowered bell function violates these 
demands, in particular as f(0) = 1.

4.3. Chaotic filters

In  accordance  with  a  standard  definition  of  chaos,  a 
filter  would  be  recognized  as  chaotic  if  two  of  its 
impulse responses diverge exponentially over time when 
the  impulse  amplitude  is  slightly changed.  This  is  of 
course what is known as sensitive dependence on initial 
conditions,  and the divergence rate is measured by the 
lyapunov exponent [5]. Chaotic filters can be analyzed 
by the  standard  methods of chaos theory,  such  as  the 
bifurcation diagram and lyapunov exponents. But since 
these analysis methods actually only deal with impulse 
responses, they cannot tell the whole story of the filter. 

A one-dimensional map can be chaotic only if 
it  is  not  invertible.  Consequently,  putting  a  regular 
monotone limiting function into the filter may not make 
it  chaotic.  The Dobson-ffitch filter  has chaotic regions 
precisely because of the square function.

The  filter  structure  of  figure  1  (eq.  10)  in 
combination with eq. 11 has a period doubling rout to 
chaos, as shown in fig. 3. Here, the varying parameter is 
center  frequency.  Going  from  high  gain  settings  and 
decreasing the gain,  as well as increasing the Q-factor, 
may also result in period doubling bifurcations.

Another  combination  of  filter  structure  and 
limiting  function  that  yields  remarkable  results  is  the 
recursive  structure  (fig  2)  and  sine  function.  When 
processing an input  sound, it  produces a mellow noisy 
tone for a wide range of parameter settings. 

When  evaluating  these  chaotic  filters,  it  is  a 
striking  fact  that  the  orbits  have  the  typical 
characteristic  of iterated  maps,  that  of bifurcations  or 
period doubling. This means, that the filter will ring on 
frequencies that divide the sampling frequency, typically 
quite high frequencies.

5. CONCLUSIONS

Nonlinear filters is a vast topic, with its two main areas 
being  statistical  filters  and  distortion  with  memory. 
Volterra  series  and  dynamic  convolution  are  two 
frequently used models for simulating analog systems. 

Although  linear  filter  theory  is  not  directly 
applicable to nonlinear filters, some of its methods may 
be  used  if  viewed  with  proper  suspicion.  It  may  be 
revealing  to  investigate  impulse  responses  at  various 
amplitudes, as well as responses to other signals with a 
flat  spectrum.  Any problems  with  aliasing  are  easily 
heard  when  filtering  a  sine  tone,  slowly swept  from 
Nyquist to DC. However, the filter’s value as a musical 
effect  will  only  become  apparent  when  tested  with 
musical  signals.  Often  the  sound  of  a  recursive 
nonlinear  filter is more fascinating than those that can 
be produced by structures separated into a waveshaping 
and linear filter part.
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Fig.  4. Bifurcation  diagram of filter  structure  I (eq. 
13) with lowered bell function. Gain is constant = 2, 
center frequency = fs/80 and Q-factor goes from 0.1 to 
2.1 from left to right. 

Figure  3.  Bifurcation  diagram  of  eq.  10  with  bell 
function. Gain and Q-factor are both 1, frequency goes 
from 0 to fs/8 on the right.
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