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ABSTRACT

Apart from the sounds they make, synthesis models are
distinguished by how the sound is controlled by synthesis
parameters. Smoothness under parameter changes is often
a desirable aspect of a synthesis model. The concept of
smoothness can be made more accurate by regarding the
synthesis model as a function that maps points in parameter
space to points in a perceptual feature space. We introduce
new conceptual tools for analyzing the smoothness related
to the derivative and total variation of a function and apply
them to FM synthesis and an ordinary differential equation.
The proposed methods can be used to find well behaved
regions in parameter space.

1. INTRODUCTION

Some synthesis parameters are like switches that can as-
sume only a discrete set of values, other parameters are like
knobs that can be seamlessly adjusted within some range.
Only the latter kind of parameter will be discussed here.
Usually, a small change in some parameter would be ex-
pected to yield a small change in the sound. As far as this
is the case, the synthesis model may be said to have well
behaved parameters.

A set of criteria for the evaluation of synthesis models
were suggested by Jaffe [1]. Three of the criteria seem rel-
evant in this context: 1) How intuitive are the parameters?
2) How perceptible are parameter changes? 3) How well
behaved are the parameters? The vague notion of smooth-
ness under parameter changes (which is not the name of
one of Jaffe’s criteria) can be made more precise by the
approach taken in this paper.

From a user’s perspective, the mapping from controllers
to synthesis parameters is important [2]. In synthesis mod-
els with reasonably well behaved parameters, there are good
prospects of designing mappings that turn the synthesis
model and its user interface into a versatile instrument.
However, a synthesis model does not necessarily have to
have well behaved parameters to be musically useful. De-
spite the counter-intuitive parameter dependencies in com-
plicated nonlinear feedback systems, some musicians are
using them [3]. Likewise, acoustic instruments may have

Copyright: c©2013 Risto Holopainen et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

far from smooth responses to changes in physical control
variables (e.g. overblowing in wind instruments).

The smoothness of transitions has been proposed as a cri-
terion for evaluating sound morphings [4]. As the mor-
phing parameter is varied between its extremes, one would
expect the perceived sound to pass through all intermediate
stages as well. However, because of categorical perception
some transitions may not be experienced as gradual. It may
be impossible to create a convincing morph between, say,
a banjo tone and a sustained trombone tone.

Quantitative descriptions of the smoothness of a synthesis
parameter should use a measure of the amount of change in
the sound, which can be regarded as a distance in a percep-
tual space. Similarity ratings of pairs of tones have been
used in research on timbre perception, where multidimen-
sional scaling is then used to find a small number of di-
mensions that account for the perceived distances between
stimuli [5]. In several studies, two to four timbral dimen-
sions have been found and related to various acoustic cor-
relates, often including the attack time, spectral centroid,
spectral flux and spectral irregularity [6]. The importance
of spectrotemporal patterns was stressed in a more recent
study [7] where five perceptual dimensions were found.

Most timbre studies have focused on pitched, harmonic
sounds, in effect neglecting a large part of the possible
range of sounds that can be synthesized. At the other ex-
treme, the problem of similarity between pieces of music
has been addressed in music information retrieval [8]. The
difficulty in comparing two pieces of music is that they
may differ in so many ways, including tempo, instrumen-
tation, melodic features and so on. Most synthesis models
of interest to musicians are also able to vary along several
dimensions of sound, e.g., pitch, loudness, modulation rate
and many timbral aspects. A thorough study of the per-
ceived changes of sound would include listening tests for
each synthesis model under investigation. A more tractable
solution is to use signal descriptors as a proxy for such
tests.

There are numerous signal descriptors to choose from [9],
but the descriptors should respond to parameter changes in
a given synthesis model. For example, in a study of the
timbre perception of a physical model of the clarinet, the
attack time, spectral centroid and the ratio of odd to even
harmonics were found to be the salient parameters [10].
Since a synthesis model may be well behaved with re-
spect to certain perceptual dimensions but not to others,
the smoothness may be assessed individually for each of a
set of complementary signal descriptors.

A synthesis model will be thought of as a function that
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maps a set of parameter values to a one-sided sequence of
real numbers, representing the audio samples. It will be
assumed that all synthesis parameters are set at the begin-
ning of a note event and remain fixed during the note. Dy-
namically varying parameters can be modelled by an LFO
or envelope generator, but for simplicity we will consider
only synthesis parameters that remain constant over time.

The effects of parameter changes may be studied either
locally near a specific point in parameter space, or glob-
ally as a parameter varies throughout some range. The lo-
cal perspective leads to a notion of the derivative of a syn-
thesis model, which is developed in section 2. Parameter
changes over a range of values are better described by the
total variation, which is introduced in section 3. Then, sec-
tions 4 and 5 are devoted to case studies of the smoothness
of FM synthesis and the Rössler attractor. Some applica-
tions and limitations of the methods are discussed in the
conclusion.

2. SMOOTHNESS BY DERIVATIVE

In order to formalize the notion of smoothness, we will for-
mulate a synthesis model explicitly as a function and de-
scribe what it means for that function to be smooth. First,
we define a suitable version of the derivative. Then, in Sec-
tions 2.2 and 2.3, the practicalities of an implementation
are discussed.

2.1 Definition of the derivative

Consider a synthesis model as a function G : Rp → RN

that maps parameters c ∈ Rp to a one-sided sequence of
samples xn, n = 0, 1, 2, . . ., where the sample sequence
will be notated X(c) to indicate its dependence on the pa-
rameters. Then the question of smoothness under param-
eter changes is related to the degree of change in the se-
quence X(c) as the point c in parameter space varies. In
practice, the distance in the output of the synthesis model
will be measured through a signal descriptor rather than
from the raw output signal. If a distance were to be cal-
culated from the signals themselves, two periodic signals
with identical amplitude and frequency but different phase
might end up being widely separated according to the met-
ric, despite sounding indistinguishable to the human ear.
Signal descriptors that are clearly affected by the synthesis
parameters and that can be interpreted in perceptual terms
are preferable.

In order to treat the synthesis model as a function, it will
be assumed to be deterministic in the sense that the same
point in parameter space always yields identical sample se-
quences. The idea of relating how much a function f(x)
changes as the independent variable x changes by a small
amount leads to the concept of derivative. Functions that
have derivatives of all orders are called smooth. A more
refined concept is to say that a function is k times con-
tinuously differentiable; the larger k is, the smoother the
function.

Now, we would like to apply some suitably defined deriva-
tive to synthesis models considered as functions. To this
end, a distance metric is needed for points in the parameter

space, and another distance metric is needed for points in
the space of sample sequences. Let dp(c, c′) be a metric
in parameter space, and let ds(X(c), X(c′)) be a metric in
the sequence space. The derivative can then be defined as
the limit

lim
‖δ‖→0

ds(X(c), X(c+ δ))

dp(c, c+ δ)
(1)

where δ ∈ Rp is some small displacement in parameter
space. The limit, if it exists, is the derivative evaluated at
the point c.

In general, synthesis parameters do not make up a uni-
form space. Different parameters play different roles; they
affect the sound subtly or dramatically and may interact so
that the effect of one parameter depends on the settings of
other parameters. This makes it hard to suggest a general
distance metric that would be suitable for any synthesis
model. Our solution will be to consider the effects of vary-
ing a single synthesis parameter cj at a time, so the distance
dp(c, c

′) in (1) reduces to
∣∣cj − c′j∣∣. Furthermore, consider

a scalar valued signal descriptor φ(i)(c) ≡ φ(i)(X(c))
which itself is a signal that depends on the sample se-
quence and the parameter value. Thus, we arrive at a kind
of partial derivative evaluated with respect to the parameter
cj using a signal descriptor φ(i),

∂φ(i) ◦G(c)

∂cj
= lim
h→0

ds(φ
(i)(c), φ(i)(c+ hej))

h
(2)

where ej is the jth unit vector in the parameter space.
Clearly the magnitude of this derivative depends on the
specifics of the signal descriptors used and which synthesis
parameters are considered. In a finite dimensional space,
all partial derivatives should exist and be continuous for
the derivative to exist. Such a strict concept of derivative
does not make sense in the present context where any num-
ber of different signal descriptors can be employed, so only
the partial derivatives (2) will be considered.

Before discussing the implementation, let us recall some
intuitive conceptions of the derivative. As William Thurston
has pointed out [11], mathematicians understand the deriva-
tive in multiple ways, including the following.

• The derivative is the slope of a line tangent to the
graph, if it has a tangent.

• In terms of symbolic operations, d
dxx

n = nxn−1.

• The derivative is the best linear approximation to the
function near a point.

• It is the limit of what you get by looking at a function
under a microscope of higher and higher power.

Synthesis models are typically very complicated if con-
sidered as mathematical functions; hence the analytic ap-
proach to differentiation is out of the question and one has
to rely upon numerical approximations. The various intu-
itions of what the derivative is may guide a practical nu-
merical implementation in different directions, as will be
further discussed in Section 2.3.



Numerical estimation of the derivative is highly sensitive
to measurement noise. Here one source of measurement
noise are the signal descriptors. Whereas one would like
to magnify a curve in order to find its derivative at a point,
doing so will also reveal more fine details caused by the
noise, which may lead to false estimates. When properly
estimated, the derivative will exaggerate irregularities and
make them easier to detect.

2.2 Pointwise or time-average distance?

The distance metric ds in sequence space has so far been
left unspecified. We propose two alternatives, each suit-
able in different situations. The signal descriptors that will
be used are based on short-time Fourier transforms of the
signal X(c) at regular intervals, using a hop size equal to
the FFT window length, L. Hence, the signal descriptor
is a sequence which we write concisely as φm(c), where
m = bn/Lc is a time index.

Using a pointwise distance metric, one may follow the
two signals over time and take the sum over their distances
|φm(c)− φm(c′)| at each moment. Since these are infi-
nite sequences, the sum may not converge. Therefore, an
exponentially decaying weighting function is applied in the
distance metric

ds(X(c), X(c′)) =

[ ∞∑
m=0

γm (φm(c)− φm(c′))
2

]1/2
(3)

where γ ∈ (0, 1) controls the decay rate. Convergence is
then guaranteed if the signal descriptors φm are bounded.

The second approach involves first taking an average over
the sequence φm(c), m = 0, 1, . . . ,M and then compar-
ing averages of two sequences. Thus, the distance becomes

ds(X(c), X(c′)) = |〈φ(c)〉 − 〈φ(c′)〉| (4)

where we take time averages

〈φ(c)〉 = lim
M→∞

1

M

M−1∑
m=0

φm(c) (5)

before computing the distance. For time-varying signals,
the drawback of the second approach is that two different
temporal sequences φm may average to the same value.

As an illustration, consider two signals of equal average
amplitude, the first having constant amplitude and the sec-
ond with a periodic amplitude modulation. Suppose we
compare the RMS amplitudes of the two signals using the
second approach (4). When averaged over sufficiently long
time, both signals will appear to have the same average
amplitude. In contrast, the pointwise distance measure (3)
will detect their difference.

2.3 Estimation of the derivative

A numerical computation of the derivative may return a
number even if the limit (1) or (2) does not exist. There-
fore, a measure of the reliability of the estimate, or “degree
of differentiability”, should be added.

Although the synthesis model is assumed to be deter-
ministic, all signal descriptors will introduce measurement
noise. If a number of windowed segments of the signal are
analyzed, then the spectrum of these segments will fluctu-
ate unless some integer number of periods fit exactly into
the window. The fluctuation can be reduced by using the
time-averaged version of the distance metric (4).

Several methods for the estimation of derivatives exist
[12]. Theoretically, it may be possible to arrive at ana-
lytical expressions for the derivative of a synthesis model
considered as a function, at least in some trivial cases. In
practice, numerical estimates have to be used. A simple
approach would be to evaluate (2) directly at two points
c and c′. Another approach is to fit a polynomial to the
curve φ(c), and then do a symbolic differentiation of the
polynomial.

The method of estimation of derivatives that will be used
here is similar to one described in ref. [12, p. 231] but
slightly simpler. The derivative at a point c0 is approx-
imated by a sequence of symmetric differences with de-
creasing distance h. A linear regression of this sequence
gives the derivative as the intercept. Suppose a sequence
of slopes

yi(c0;hi) =
φ(c0 + hi)− φ(c0 − hi)

2hi
(6)

are given. Then the limit as h → 0 can be found as the
y-intercept of the fitted line

yi = d+ bhi + ηi, (7)

which gives the estimated derivative d. This method also
provides a hint about the badness of fit, for which the root
mean square error (RMSE) of the residuals η can be used.

3. TOTAL VARIATION

Whereas the derivative is concerned with local behaviour
of a function, an even more useful perspective on the smooth-
ness of a synthesis model may be to look at its properties
over intervals of a parameter. One possible way to do so is
to measure the length of the curve that a signal descriptor
traces out as the parameter traverses some interval. If this
curve is highly wrinkled, the curve becomes rather long,
whereas a straight line connecting the endpoints means that
the parameter changes are smooth. The total variation of
a function may be used for such a measure; intuitively, it
measures the length travelled back and forth on the y-axis
of a function y = f(x), x ∈ [a, b].

Let f(x) be a real function defined on an interval x0 ≤
x ≤ xk, and suppose x0 < x1 < · · · < xk is a partition of
the interval. Then the total variation of f(x), x0 ≤ x ≤ xk
is defined as

Vxk
x0

(f) = sup

k∑
j=1

|f(xj)− f(xj−1)| (8)

taking the supremum over all partitions of the function. If
f is differentiable, the total variation is bounded and can
be expressed as



Vxk
x0

(f) =

xk∫
x0

|f ′(x)| dx. (9)

Also, recall that one way for a function to fail to be differ-
entiable is that its total variation diverges to infinity.

The mesh of the partition, which is the greatest distance
|xj − xj−1|, needs to be fine enough when estimating the
total variation numerically. A global description of the
function’s smoothness is obtained from considerations of
the limit of the total variation as the mesh gets finer. Sup-
pose the partition of [x0, xk] is uniform with each point
separated from its nearest neighbours by |xj−xj−1| = ∆.
Then, the question is whether a limit exists as ∆→ 0.

For the present purposes it will suffice to consider ap-
proximations of the total variation using a small but fixed
mesh. Certain functions may appear to have different amounts
of total variation when observed at different scales. A slow
increase in total variation as the mesh is successively made
finer indicates that the estimation process goes as intended.

An alternative to measuring the total variation would be
to measure the arc length, which can be thought of as the
length of a string fitted to the curve if it is continuous.
Fractal curves on the plane have the property that their arc
length grows as the measurement scale gets smaller.

When measuring the total variation of a signal descriptor
over a range of synthesis parameter values, there are still
two possible approaches to how the distance is measured.
As discussed above in section 2.2, either a pointwise dis-
tance may be taken, or the distance may be taken over time
averages of the signal descriptors. The latter approach will
be used here because it is better suited for the case of static
parameters. Applications of the derivative and total varia-
tion to two synthesis models will be demonstrated next.

4. FM SYNTHESIS

With only three synthesis parameters, basic FM synthesis
is convenient for investigations of the smoothness of its
parameter space. The formula that will be used is

xn = sin(2πfcn/fs + I sin(2πfmn/fs)) (10)

with modulation index I , carrier frequency fc, modula-
tor frequency fm and sample rate fs = 48 kHz. Since
the spectrum of the signal (10) is governed by a sum of
Bessel functions [13], it may actually be possible to esti-
mate some related signal descriptors directly from the for-
mula, although we will not attempt to do so. The oscil-
lations of the Bessel functions give FM synthesis its char-
acteristic timbral flavour of partials that fade in and out as
the modulation index I increases, with the overall bright-
ness increasing with the modulation index. Brightness is
related to the spectral centroid, which will be used to study
the effects of parameter changes.

In the top of Figure 1, the centroid is shown as a function
of I at two different carrier to modulator (C:M) ratios. The
centroid, given in units of normalized frequency, is mea-
sured as the time average over 25 FFT windows using a
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Figure 1. FM synthesis. Top: centroid as a function of
modulation index for fc = fm = 440 Hz (solid line) and
fc = 311.1, fm = 440 Hz (dashed line). The outer lines
indicate one standard deviation of the centroid. Bottom:
the derivative of the centroid at fc = fm = 440 Hz.

1024 point Hamming window. As can be seen, the C:M ra-
tio 1 gives a rather bumpy curve with a general rising trend
of the centroid, but with several local peaks. The bottom
part shows the derivative, estimated with the method de-
scribed in the end of Section 2.3. Evidently, the derivative
is discontinuous at each of the peaks. The RMSE of the
linear regression used in the estimation of the derivative is
typically very small, but has sharp peaks around the dis-
continuities. It turned out to be necessary to re-initialize
the oscillator’s initial phase at the beginning of each run at
a new parameter value, otherwise there would be oscilla-
tions in the centroid as a function of modulation index that
would prevent the derivative from converging.

The total variation of the centroid over the range 0 <
I ≤ 12.5 is about 0.127 for the inharmonic ratio fc/fm =
1/
√

2, and increases to about 0.188 for fc/fm = 1. We
may now ask how the total variation changes as a function
of the C:M ratio. This is shown in Figure 2. Narrow peaks
arise at the simple C:M ratios 1 : 2, 1 and 3 : 2. Inso-
far as FM synthesis is reputed for its timbral variability as
the modulation index varies, this phenomenon is more pro-
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Figure 2. Total variation of the centroid of FM signals for
I ∈ [0, 12.5] as a function of the C:M ratio.

nounced at the simple C:M ratios that result in harmonic
spectra.

Since the density of the spectrum depends on the modu-
lation index as well as on the C:M ratio, signal descriptors
related to spectral density may provide additional insights.
The spectral entropy will be used for this purpose. Spec-
tral entropy is measured from the amplitude spectrum, nor-
malized so that all bins ak sum to 1. Then, the normalized
entropy is

H = − 1

norm

∑
k

ak log ak (11)

where a perfectly flat spectrum yields the maximum spec-
tral entropy H = 1, and a sinusoid results in the smallest
possible entropy of a signal that is not completely silent.

In Figure 3, the spectral entropy is shown as a function
of the C:M ratio as well as the modulation index. De-
spite an even geometric progression of the modulation in-
dex I ∈ [0.25, 20], the curves are slightly irregularly dis-
tributed. Two dips in spectral entropy can be seen at the
simple ratios C : M = 1, 2. These dips can be understood
to result from the fact that, at harmonic C:M ratios, several
partials overlap (negative frequencies match positive fre-
quencies), whereas for inharmonic ratios, there are more
distinct partials in the spectrum.

The total variation of spectral entropy over the range of
C:M ratios shown in Figure 3 is about 1 for I = 0.25, and
it increases monotonically to a maximum value of 2.5 at
I = 1.25. For higher modulation indices, the total varia-
tion decreases. These results can be interpreted as indicat-
ing that, if the modulation index is set at a fixed value and
the C:M ratio is varied, then the sounds will change less for
low modulation indices, and the maximum change occurs
for I = 1.25.

5. THE RÖSSLER SYSTEM

Ordinary differential equations with bounded and oscil-
lating solutions are good candidates for sound synthesis.
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Figure 3. Spectral entropy of FM as a function of C:M
ratio (horizontal) and modulation index (vertical).

Figure 4. Poincaré section of the Rössler system showing
bifurcations for c ∈ [1, 8] and a = b = 0.3.

In particular, there are many nonlinear oscillators capa-
ble of both chaotic and periodic behaviour. Rössler’s sys-
tem [14],

ẋ = −y − z
ẏ = x+ ay (12)
ż = b+ z(x− c)

is known to have a chaotic attractor at a = b = 0.2, c =
5.7. For lower values of c there are periodic solutions.
A Poincaré section across the ray x = −y, x ≥ 0 at
a = b = 0.3 and a range of values of c reveals a period
doubling route to chaos, after which there is a period two
window (see Figure 4). In the following, (12) is solved
with the fourth order Runge-Kutta method. The system is
allowed time to approach an attractor by iterating at least
25000 time steps of size 0.025 before any measurements
are taken.

The system rotates in the xy-plane, with occasional spikes
in the z variable. Therefore, the x and y variables are suit-
able for use as audio signals, after they have been suitably
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Figure 5. RMS amplitude of the Rössler system; the aver-
age of x and y is greater than z for low values of c.

scaled in amplitude. The first thing to check with an or-
dinary differential equation intended for use as an audio
oscillator is its amplitude range and stability. As can be
seen from Figure 4, the amplitude grows approximately
linearly with c over the displayed range. By measuring the
RMS amplitude of each coordinate, one gets a more de-
tailed overview of the amplitude’s dependence on the pa-
rameter c (see Figure 5). Because the amplitudes of x and
y are typically not very different, their average has been
plotted together with the amplitude of the z coordinate.

Bifurcation plots already reveal a few things about the
smoothness under parameter changes. Each bifurcation is
a point where the system’s behaviour changes in a discon-
tinuous way, whereas the behaviour between bifurcations
can be expected to vary more smoothly.

Before going further, let us recall that dynamic systems
may depend critically on the initial condition. Indeed, chaos
is defined in terms of the exponential divergence of two
orbits starting from infinitesimally separated initial condi-
tions, which is measured with the largest Lyapunov expo-
nent [15]. Even more dramatically, different initial con-
ditions may lead to different kinds of behaviour. In con-
servative systems, orbits may be periodic, quasiperiodic or
chaotic depending on the initial condition. Dissipative sys-
tems, such as Rössler’s, have a basin of attraction of points
that end up on the attractor, but should an orbit be started
from outside the basin of attraction, it may wander off to
infinity.

It is important to distinguish the properties of the orbit it-
self (chaotic versus regular) from the bifurcation scenarios
as a parameter is varied. When looking at bifurcation di-
agrams, there are intervals of smooth change and intervals
that are very irregular. It is tempting to guess that the ir-
regular parts correspond to chaotic orbits, and the smooth
parts to periodic orbits. This is only a half-truth; in fact,
there are periodic windows interspersed with all the chaos.

As already seen, the RMS amplitude changes smoothly
in some regions and irregularly in others. A quick compar-
ison with the largest Lyapunov exponent λ indicates that
the irregular parts correspond to chaotic regions (see Fig-
ure 6). Although it is easy to pick out “irregular regions”
by visual inspection, a localized version of total variation
can also achieve this. The local variation (LV) is defined as

the total variation over a short interval of length δ centred
about a point x:

LV (f ;x, δ) = Vx+δ/2x−δ/2 (f) (13)

A mathematical definition of the LV would probably in-
volve taking the limit δ → 0, but for practical purposes a
small but finite interval must be used. Now the smooth-
ness of a curve may be described in the neighbourhood of
any point x0, which is computed by partitioning the inter-
val into a suitably large number of points and proceeding
as described above in Section 3. In the following example,
δ = 0.02 has been subdivided into 16 steps to find the local
variation.
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Figure 6. Greatest Lyapunov exponent (top) and local
variation of the RMS amplitude (bottom) for the Rössler
system as a function of the parameter c.

The local variation of the average RMS amplitude of the
x and y coordinates of the Rössler system are shown in
Figure 6 below a plot of the largest Lyapunov exponent
over the same parameter range. When λ = 0, the dynamics
is regular (either periodic or quasi-periodic), whereas λ >
0 indicates chaos. It is worth noting that regions of regular
dynamics correspond to low values of the local variation,
i.e., the amplitude changes smoothly. At chaotic regions,
the local variation obtains higher values, although there is
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Figure 7. Derivative of the peak amplitude of the z coor-
dinate as a function of c. Points of bifurcations are marked
with circles.

no simple correlation between λ and LV. The higher values
of LV in chaotic regions can be partly explained by the
existence of periodic windows which may be very thin, yet
are known to be dense in the chaotic regions.

In the interval 1 ≤ c ≤ 4, there is a sequence of pe-
riod doubling bifurcations. Most changes in amplitude are
too subtle to notice directly (compare Figure 5), but taking
the derivative, as shown in Figure 7, reveals points where
the slope changes. In fact, the bifurcation points would be
even easier to detect by plotting the second derivative of
the peak amplitude.

In this study of the Rössler system, the effects of tran-
sients and dynamic parameter changes have been mini-
mized. On the contrary, in a performance situation when
using the Rössler system as an audio oscillator, its param-
eters would typically change over time. Then one may no-
tice effects of hysteresis near bifucrations and in the chaotic
regions. Approaching the same parameter value from dif-
ferent directions may then result in different behaviour.

6. CONCLUSION

By conceiving of a synthesis model as a function from
points in parameter space to one-sided real sequences of
audio samples, we have introduced a concept of derivative
and total variation that can be used to describe the smooth-
ness properties of the synthesis model. The derivative re-
lates to local properties near specific points in parameter
space, whereas the total variation characterizes the amount
of change over intervals of a parameter. Interesting find-
ings were that the total variation of the centroid with re-
spect to the modulation index in FM synthesis is greater
for simple harmonic C:M ratios than for other ratios. In
other words, FM becomes smoother for inharmonic C:M
ratios than for simple ratios. In the study of the Rössler
system, we found that regular dynamics corresponds to
smooth variation in the RMS amplitude. Chaotic regions
are generally less smooth in parameter space, but there
is some variation and relatively smooth parameter regions
may exist where the system is chaotic as well.

The methods of characterizing the smoothness of synthe-
sis models can be applied to analog synthesis and even to

acoustic instruments using mechanical transducers to ex-
cite them. Mechanical transducers may be needed also for
the automated control of acoustic instruments by MIDI or
other means, but the response characteristics of the trans-
ducer and the instrument considered together may not be
known in advance and need to be mapped out. Analog,
voltage controlled synthesizers can be similarly studied by
applying some control voltage to one of its inputs. Then,
studying the signal’s response to changes in control volt-
age can further elucidate input to output relations and the
smoothness of the parameter. Although smoothness prop-
erties can be roughly assessed by visual inspection, the
derivative, and the total and local variations provide quan-
titative measures of smoothness.

Comparisons of smoothness properties across different
synthesis models are, however, not so straightforward. One
might intuitively want to argue that the Rössler system is
less smooth, on the whole, than FM synthesis, but the set
of synthesis parameters have entirely different meanings
in the two models, so a direct comparison will be prob-
lematic. The same signal descriptors and distance metrics
must of course be used for both synthesis models, and one
must decide what parameter ranges to compare.

Noise is used in many kinds of synthesis. If the noise is
prominent in the output signal, it will increase the variance
of the signal descriptors and make the estimation of deriva-
tives and total variation more complicated. If the noise
is mild enough not to alter the behaviour of the synthe-
sis model altogether, one can take ensemble averages over
many runs of the system. Stochastic synthesis such as Xe-
nakis’ Gendyn algorithm [16] may however be beyond the
scope of the present methods.

Ordinary differential equations and nonlinear feedback
systems may exhibit hysteresis. In synthesis models with
hysteresis, there is no longer a unique correspondence be-
tween the point in parameter space and the resulting out-
put signal. This fact invalidates the assumption that the
synthesis model can be thought of as a function that maps
points in parameter space to sequences in the sample se-
quence space. Sometimes a transition from one type of
behaviour to another may depend not only on the direction
of the changing parameter, but also the speed of its change.

We began by making the assumption that signal descrip-
tors could be used instead of conducting listening tests.
This is obviously an exaggeration. Firstly, one needs to
know what perceptual characteristics of sound are captured
by various signal descriptors. Second, we have been look-
ing at rather small variations in these descriptors and mag-
nified them with the derivative or considered their total
variation. It is very easy to gain a false impression that
minor variations or roughnesses in the curves would be au-
dible. Listening tests would be necessary in order to assess
how the smoothness and irregularity of parameter changes
are really perceived.

The assumption that maximally smooth parameters are
always preferable is not necessarily true. Monotonicity
and smoothness may be good, because then the parame-
ter can be remapped in a way that is more practical for the
user. Nevertheless, the rugged appearance of the parame-



ter space of a chaotic system should not detract musicians
from using them.
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