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The Kuramoto model

The equation

θ̇j = ωj +
K
N

N∑
k=1

sin(θk − θj), j = 1, . . . ,N

is the Kuramoto model with parameters

ωj : frequency of each oscillator
K : coupling strength
N: number of oscillators

θj is a phase variable in [0, 2π].



Initial conditions

I Choose N random frequencies from a distribution g(ω)

Typically, g(ω) is unimodal (Gaussian or Lorentzian)
I Choose inital phases (e.g. randomly, or constant, θj = 0, ∀j)



Coupling topologies

All-to-all coupling: O(N2)
Local coupling on a circle
“Small world networks” — random couplings with given probability

Further variations:
Delayed couplings (neural nets)
Different populations of oscillators (different natural frequencies)
External driving: periodic, quasi-periodic, noise, etc.



Increasing K
As the coupling increases, the oscillators synchronize.
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The order parameter

Phases are taken modulo 2π. Use circular statistics.

re iψ =
1
N

N∑
k=1

e iθk

Order parameter: a complex number in polar form

ψ ∈ [0, 2π] is the “average phase”
r ∈ [0, 1] is the phase coherence

Oscillators in sync → r ≈ 1
independent / unordered → r ≈ 0



Order parameter geometry

The order parameter is a vector.
Its length increases as oscillators synchronize.

K = 0
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Red arrow: order parameter
Blue circles: phase values



Onset of sync — critical coupling

For K < Kc , r ≈ 0
For K > Kc , r approaches 1.
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Kc depends on the spread of the frequency distribution g(ω)



Time evolution of the order parameter

Coupling dependece:
For K > Kc the order parameter rapidly increases.
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Advanced techniques

The Kuramoto model is studied in the limit N →∞.
Continuous probability distribution ρ(θ) of phase
A partial differential equation describes the evolution of ρ(θ)
Variable substitutions: The order parameter is explicitly used
Rescaling of variables: let 〈g(ω)〉 = 0
The Ott-Antonsen ansatz (2008): the dynamics of the Kuramoto
model can be reduced to a low-dimensional ODE.



Phenomena in coupled oscillators

I Phase locking
I Incoherent to synchronized transition
I Oscillation death
I Chimera states
I Noise-induced synchronisation

Examples:
phase locking and oscillation death in organ pipes
period doubling in applause (Néda et al. 2000)





Landau-Stewart oscillators

The Hopf oscillator (or Landau-Stewart oscillator):

ż = (α + iω − |z |2)z

for complex z.
Limit cycle oscillator with amplitude

√
α if α > 0, and frequency ω.



Coupled Landau-Stewart oscillators

Simplest case of mean field coupling:

żj = (α + iωj − |zj |2)zj +
K
N

N∑
k=1

zk , j = 1, . . . ,N

K < 0 is inhibitory
K > 0 increases amplitude
Reduces to the Kuramoto model if the amplitude is neglected
(Pyragas et al. 2007).



Order parameter
Define the order parameter for the Landau-Stewart oscillator

re iψ =
1
N

N∑
k=1

e i arg zk

K

Amplitude
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Average amplitude and order (r) for 125 oscillators



External forcing

Adaptive oscillators for beat tracking uses external forcing, e.g.

żj = f (zj) + KZ̄ + x(t)

f (z) is the Landau-Stewart oscillator
Z̄ is the average of oscillators
x(t) is the input signal



Sync in chaotic systems

Discovered by Pecora & Carroll (1990)

ẋ = f(x) + Ky1

ẏ = f(y) + Kx1

where x, y ∈ R3 or higher dimension. Criterion of sync: ‖x− y‖ < ε
Generalized synchronization (of phase): θ̇1 = θ̇2 — same frequency,
phase may differ.
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